294 research outputs found

    The integrated Sachs-Wolfe effect in the AvERA cosmology

    Full text link
    The recent AvERA cosmological simulation of R\'acz et al. (2017) has a ΛCDM\Lambda \mathrm{CDM}-like expansion history and removes the tension between local and Planck (cosmic microwave background) Hubble constants. We contrast the AvERA prediction of the integrated Sachs--Wolfe (ISW) effect with that of ΛCDM\Lambda \mathrm{CDM}. The linear ISW effect is proportional to the derivative of the growth function, thus it is sensitive to small differences in the expansion histories of the respective models. We create simulated ISW maps tracing the path of light-rays through the Millennium XXL cosmological simulation, and perform theoretical calculations of the ISW power spectrum. AvERA predicts a significantly higher ISW effect than ΛCDM\Lambda \mathrm{CDM}, A=1.935.29A=1.93-5.29 times larger depending on the ll index of the spherical power spectrum, which could be utilized to definitively differentiate the models. We also show that AvERA predicts an opposite-sign ISW effect in the redshift range z1.54.4z \approx 1.5 - 4.4, in clear contrast with ΛCDM\Lambda \mathrm{CDM}. Finally, we compare our ISW predictions with previous observations. While at present these cannot distinguish between the two models due to large error bars, and lack of internal consistency suggesting systematics, ISW probes from future surveys will tightly constrain the models.Comment: 9 pages, 8 figures. Submitted to MNRA

    Refined position angle measurements for galaxies of the SDSS Stripe 82 co-added dataset

    Get PDF
    Position angle measurements of Sloan Digital Sky Survey (SDSS) galaxies, as measured by the surface brightness profile fitting code of the SDSS photometric pipeline (Lupton 2001), are known to be strongly biased, especially in the case of almost face-on and highly inclined galaxies. To address this issue we developed a reliable algorithm which determines position angles by means of isophote fitting. In this paper we present our algorithm and a catalogue of position angles for 26397 SDSS galaxies taken from the deep co-added Stripe 82 (equatorial stripe) images.Comment: 4 pages, 4 figures. Data are published on-line at http://www.vo.elte.hu/galmorp

    Galaxy shape measurement with convolutional neural networks

    Get PDF
    We present our results from training and evaluating a convolutional neural network (CNN) to predict galaxy shapes from wide-field survey images of the first data release of the Dark Energy Survey (DES DR1). We use conventional shape measurements as ground truth from an overlapping, deeper survey with less sky coverage, the Canada-France Hawaii Telescope Lensing Survey (CFHTLenS). We demonstrate that CNN predictions from single band DES images reproduce the results of CFHTLenS at bright magnitudes and show higher correlation with CFHTLenS at fainter magnitudes than maximum likelihood model fitting estimates in the DES Y1 im3shape catalogue. Prediction of shape parameters with a CNN is also extremely fast, it takes only 0.2 milliseconds per galaxy, improving more than 4 orders of magnitudes over forward model fitting. The CNN can also accurately predict shapes when using multiple images of the same galaxy, even in different color bands, with no additional computational overhead. The CNN is again more precise for faint objects, and the advantage of the CNN is more pronounced for blue galaxies than red ones when compared to the DES Y1 metacalibration catalogue, which fits a single Gaussian profile using riz band images. We demonstrate that CNN shape predictions within the metacalibration self-calibrating framework yield shear estimates with negligible multiplicative bias, m<103 m < 10^{-3}, and no significant PSF leakage. Our proposed setup is applicable to current and next generation weak lensing surveys where higher quality ground truth shapes can be measured in dedicated deep fields

    StePS: A Multi-GPU Cosmological N-body Code for Compactified Simulations

    Get PDF
    We present the multi-GPU realization of the StePS (Stereographically Projected Cosmological Simulations) algorithm with MPI-OpenMP-CUDA hybrid parallelization and nearly ideal scale-out to multiple compute nodes. Our new zoom-in cosmological direct N-body simulation method simulates the infinite universe with unprecedented dynamic range for a given amount of memory and, in contrast to traditional periodic simulations, its fundamental geometry and topology match observations. By using a spherical geometry instead of periodic boundary conditions, and gradually decreasing the mass resolution with radius, our code is capable of running simulations with a few gigaparsecs in diameter and with a mass resolution of 109M\sim 10^{9}M_{\odot} in the center in four days on three compute nodes with four GTX 1080Ti GPUs in each. The code can also be used to run extremely fast simulations with reasonable resolution for fitting cosmological parameters. These simulations are useful for prediction needs of large surveys. The StePS code is publicly available for the research community

    An improved cosmological parameter inference scheme motivated by deep learning

    Get PDF
    Dark matter cannot be observed directly, but its weak gravitational lensing slightly distorts the apparent shapes of background galaxies, making weak lensing one of the most promising probes of cosmology. Several observational studies have measured the effect, and there are currently running, and planned efforts to provide even larger, and higher resolution weak lensing maps. Due to nonlinearities on small scales, the traditional analysis with two-point statistics does not fully capture all the underlying information. Multiple inference methods were proposed to extract more details based on higher order statistics, peak statistics, Minkowski functionals and recently convolutional neural networks (CNN). Here we present an improved convolutional neural network that gives significantly better estimates of Ωm\Omega_m and σ8\sigma_8 cosmological parameters from simulated convergence maps than the state of art methods and also is free of systematic bias. We show that the network exploits information in the gradients around peaks, and with this insight, we construct a new, easy-to-understand, and robust peak counting algorithm based on the 'steepness' of peaks, instead of their heights. The proposed scheme is even more accurate than the neural network on high-resolution noiseless maps. With shape noise and lower resolution its relative advantage deteriorates, but it remains more accurate than peak counting

    Do the rich get richer? An empirical analysis of the BitCoin transaction network

    Get PDF
    The possibility to analyze everyday monetary transactions is limited by the scarcity of available data, as this kind of information is usually considered highly sensitive. Present econophysics models are usually employed on presumed random networks of interacting agents, and only macroscopic properties (e.g. the resulting wealth distribution) are compared to real-world data. In this paper, we analyze BitCoin, which is a novel digital currency system, where the complete list of transactions is publicly available. Using this dataset, we reconstruct the network of transactions, and extract the time and amount of each payment. We analyze the structure of the transaction network by measuring network characteristics over time, such as the degree distribution, degree correlations and clustering. We find that linear preferential attachment drives the growth of the network. We also study the dynamics taking place on the transaction network, i.e. the flow of money. We measure temporal patterns and the wealth accumulation. Investigating the microscopic statistics of money movement, we find that sublinear preferential attachment governs the evolution of the wealth distribution. We report a scaling relation between the degree and wealth associated to individual nodes.Comment: Project website: http://www.vo.elte.hu/bitcoin/; updated after publicatio

    Photo-Met: a non-parametric method for estimating stellar metallicity from photometric observations

    Get PDF
    Getting spectra at good signal-to-noise ratios takes orders of magnitudes more time than photometric observations. Building on the technique developed for photometric redshift estimation of galaxies, we develop and demonstrate a non-parametric photometric method for estimating the chemical composition of galactic stars. We investigate the efficiency of our method using spectroscopically determined stellar metallicities from SDSS DR7. The technique is generic in the sense that it is not restricted to certain stellar types or stellar parameter ranges and makes it possible to obtain metallicities and error estimates for a much larger sample than spectroscopic surveys would allow. We find that our method performs well, especially for brighter stars and higher metallicities and, in contrast to many other techniques, we are able to reliably estimate the error of the predicted metallicities.Comment: 5 pages, 4 figures, accepted for publication in A

    Measuring the dimension of partially embedded networks

    Get PDF
    Scaling phenomena have been intensively studied during the past decade in the context of complex networks. As part of these works, recently novel methods have appeared to measure the dimension of abstract and spatially embedded networks. In this paper we propose a new dimension measurement method for networks, which does not require global knowledge on the embedding of the nodes, instead it exploits link-wise information (link lengths, link delays or other physical quantities). Our method can be regarded as a generalization of the spectral dimension, that grasps the network's large-scale structure through local observations made by a random walker while traversing the links. We apply the presented method to synthetic and real-world networks, including road maps, the Internet infrastructure and the Gowalla geosocial network. We analyze the theoretically and empirically designated case when the length distribution of the links has the form P(r) ~ 1/r. We show that while previous dimension concepts are not applicable in this case, the new dimension measure still exhibits scaling with two distinct scaling regimes. Our observations suggest that the link length distribution is not sufficient in itself to entirely control the dimensionality of complex networks, and we show that the proposed measure provides information that complements other known measures
    corecore